就去读小说网 > 文学电子书 > 物理学的进化 >

第6章

物理学的进化-第6章

小说: 物理学的进化 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



一个系统的动能和势能合起来构成它的机械能。在升降滑道的例子中,我们猜测过有一部分机械能转变成热。如果这是猜对了,那么在这里,并且在所有其他类似的物理过程中应该存在着两者之间的固定转换率。严格地说,这是一个定量的问题,但是一定数量的机械能可以转变成一定数量的热这一点是很重要的。我们很想知道到底用什么样的一个数来表示转换率,就是说,从一定数量的机械能可以得到多少热。
这个数的确定就是焦耳研究的目的。
在他的实验中有一个实验的机构很像有重锤的钟,绞动这个钟,两个重锤就升高,因此使这个系统增加了势能。如果这个钟不再受干扰,便可把它当作被封闭的系统,重锤逐渐下降,钟在运转。在一定时间以后重锤将会到达其最低位置,于是钟就停下来了。能发生了什么情况呢?重锤的势能转变为机构的动能,随即又逐渐以热的形式散失了。
焦耳把这种机构巧妙地加以改变后,便能测量热的损耗并从而测定转换率。在他的仪器中两个重锤使一个浸在水中的叶轮(图20)转动。重锤的势能转变为运动部件的动能,由动能转变为热,从而提高了水的温度。焦耳测量了温度的改变,并且借助于已知的水的比热算出它所吸收的热量。他把多次实验的结果总结如下:
1.物体(无论是固体还是液体)相互摩擦所产生的热量永远正比于所消耗的力(焦耳所说的力是指能)。
2.要产生可以把0.453千克(1磅)水(在12.8摄氏度到15.6摄氏度之间的真空中称定的)的温度升高0.56摄氏度(1华氏度)的热量所需要费去的机械力〔能],可以用350千克(772磅)重的物体在空中下降30.48厘米(1英尺)来代表。
换句话说,把350千克(772磅)重的物体在地面上升高30.48厘米(1英尺)的势能,等于把0.453千克(1磅)水从12.8摄氏度(55华氏度)升高到13.3摄氏度(56华氏度)所需要的热量。虽然后来的实验家已经能够比这个实验做得更准确些,但是热功当量主要是焦耳在他的工作中发现的。这个重要的工作一旦完成,后来的进展就很快。人们不久就认识到机械能和热能只不过是能的很多种形式中的两种而已。任何东西,只要它能转变为这两种中的一种,它也是能的一种形式。太阳所发出的辐射是能,因为其中一部分在地球上转变为热。电流也具有能,因为它可以使导线发热并使电动机转动。煤隐含着化学能,因为这种能在煤燃烧时就释放出来了。在自然界的每一种现象中,一种形式的能总是以一个完全确定的转换率转变为另一种形式的能。在不受外界影响的一个封闭系统中能量是守恒的,因此和物质很相似。在这样的系统中,虽然任何一种形式的能的量也许会变化,但所有各种形式的能的总和是不变的。假使我们把整个宇宙看作是一个封闭系统,那么我们可以和19世纪的物理学家一起,骄傲地宣布宇宙的能是不变的,它的任何一部分都既不能创生也不能消灭。
这样,我们对于物质有两个概念即质和能。两者都遵从守恒定律:一个隔离系统的质量和总能都是不变的。物质具有重力,而能却没有重力。于是,我们有两个不同的概念和两个守恒定律。现在我们还能一直把这些观念认为是严格的吗?或者按照新的发展方向,这个表面上确实可靠的图景是否已有所改变呢?变了!这两个概念在相对论中又有了改变。以后我们还会回到这个问题上来的。
哲学背景
科学研究的结果,往往使离开科学领域很远的问题的哲学观点发生变化。科学所企图的目的是什么呢?一个描述自然的理论应该是怎样的呢?这些问题,虽然超越了物理学的界限,但却与物理学有很密切的关系,因为正是科学提供了产生这些问题的素材。哲学的推广必须以科学成果为基础。可是哲学一经建立并广泛地被人们接受以后,它们又常常促使科学思想的进一步发展,指示科学如何从许多可能的道路中选择一条路。等到这种已经接受了的观点被推翻以后,又会有一种意想不到和完全新的发展,它又成为一个新的哲学观点的源泉。除非我们从物理学史上引出例子来加以说明,否则这些话听来一定是很含糊和空乏的。
现在我们来描写以阐明科学为目的的最初的哲学观点。这些观点在很大程度上推动了物理学的发展,一直到差不多100年以前,才被新的验证、新的论据和理论所推翻,而这些新的验证、论据和理论又构成了新的科学背景。
从希腊哲学到现代物理学的整个科学史中不断有人力图把表面上极为复杂的自然现象归结为几个简单的基本观念和关系。这就是整个自然哲学的基本原理。它甚至表现在原子论者的著作中。在2300年前,德谟克利图(Democritus)写道:
依照习常的说法,甜总是甜,苦总是苦,冷总是冷,热总是热,颜色总是颜色。但是实际上只有原子和空位。就是说,我们通常惯于把感觉的事物当作是实在的,但是真正说起来,它们不是实在的,只有原子和空位是实在的。
这个观念,在古代哲学中,不过是巧妙的想象而已。联系到后来发生的许多现象的自然规律,希腊人是不知道的。把理论和实验联系起来的科学,事实上是从伽利略的工作开始的,我们已经研究过形成运动定律的最初线索。在200年的科学研究中,力和物质是理解自然的一切努力中的基本概念。我们不能想象这两个概念可以缺少一个,因为物质作用于其他物质总是作为力的源泉而确证它的存在的。
我们来研究一个最简单的例子:两个粒子,它们之间有力作用着。最容易想象的是引力和斥力。在这两种情况中,力的矢量都在物质粒子的连线上(图21)。为求简单起见,我们只想象粒子相互吸引或推斥,因为任何其他关于作用力的方向的假定都会导致复杂得多的图景。我们对力矢量的长度也能作一个同样简单的假定吗?即使我们想避免过分专门的假定,但这样作一个假定还是可以的:作用于任何两个已知粒子之间的力,像万有引力一样,只与它们之间的距离有关。这个假定似乎很简单。我们有很多更复杂的力可以想象,例如那些不仅与距离有关,而且与它们的速度有关的力。若以物质与力作为基本概念,我们就未必能够得到比沿着粒子的连线作用并只与距离有关的力更简单的假定了。但是只用这样一类的力是否有可能来描述所有的物理现象呢?
力学在其各个分支部门中所取得的伟大成就,在天文学发展上的惊人成功,力学观念在那些显然不具有力学性质的问题上的应用,所有这些都使我们确信,用不变的物体之间的简单作用力来解释所有的自然现象是可能的。在伽利略时代以后的200年间,这样的一种企图有意识地或无意地表现在几乎所有的科学著作中。亥姆霍兹(Helmholtz)约在19世纪中叶把它表达得特别清楚:
因此,物理科学的任务,在我们看来,归根结蒂在于把物理现象都归结为不变的引力或斥力,而这些力的强度只与距离有关。要完全了解自然,就得解决这个问题。
因此,照亥姆霍兹说来,科学发展的方向是早已决定了的,并且应该严格地遵循这样一条呆板的途径:
一旦把一切自然现象都化成简单的力,而且证明出自然现象只能这样来加以简化,那末科学的任务便算终结了。
对20世纪的物理学家来说,这种观点是枯燥而幼稚的。假如他想到巨大的研究工作竟会这样迅速结束,这样便确立了永远正确的宇宙图景,从此再不会有什么兴奋的事了,他一定会大吃一惊。
即使这些见解能够把一切现象都用简单的力来描述,但还有一个问题没有解决,那就是力与距离之间的关系如何的问题。对不同的现象来说,这种关系可能是不同的。为了解释不同的现象而引人许多种不同形式的力,这种必要性从哲学的观点来看自然是很不圆满的。可是亥姆霍兹陈述得最清楚的这种所谓机械观,在当时却起了很重要的作用。物质动理论的发展是一个最伟大的科学成就,而它就是直接受到机械观的影响的。
在叙述它的衰落以前,我们暂且接受19世纪的物理学家所持有的观点,并且看一看从他们这种关于外在世界的图景中可以得出什么样的结论。
物质动理论
是不是可以用有简单的力相互作用着的粒子的运动来解释热现象呢?在一个闭合的容器里装着一定质量和一定温度的气体(例如空气),把气体加热,我们就提高了它的温度,因而也增加了它的能量。但是这种热与运动的关系是怎样的呢?根据前面我们已经贸然接受过的哲学观点以及热是由运动所产生的说法,我们可以认为热和运动是有关系的。如果每一个问题都是力学问题,那么热必须是机械能。动理论的任务就在于用这种方法来表达物质的概念。根据这种理论,气体便是无数个粒子或分子的集合体,分子朝着各个方向运动,相互碰撞,并且在每次碰撞之后改变自己的运动方向。在这样的气体中的分子必定有一个平均速度,正如在人类社会中有平均年龄和平均收入一样,因此也必定有粒子的平均动能。容器中的热越多,平均动能就越大。根据这种想象,热不是与机械能不同的一种特殊形式的能,其实它就是分子运动的动能。任何一个一定的温度都对应有每个分子的一定平均动能。事实上这不是一个随便的假定,假使我们要作出物质的一致的力学图景,那么我们就得把一个分子的动能看作是气体温度的量度。
这个理论不单是一个想象而已。我们可以证明气体动理论不但与实验相符,并且实际上使我们对许多情况有一个更深刻的理解。这可以用几个例子来说明。
假设我们有一个容器,用一个能够自由移动的活塞将它封闭住(图22)。容器中装有一定数量的气体,这些气体的温度保持不变。如果起初活塞静止在某个位置,那么它可能因减重而上升,或者因加重而下降。要把活塞往下推,必须施加外力以抵抗气体的内压力。照动理论来说,这种内压力的机构是怎样的呢?构成气体的数量极大的粒子是向各方面运动的,它们撞击容器的壁与活塞,撞了又跳回来,正如掷到墙上的球一样。大量粒子的这种不断撞击,反抗着作用在活塞与重物上的向下作用的重力,因而能使活塞保持在某个高度上。在一个方向上有不变的重力在作用,在另一个方向上则是分子的大量不规则的碰撞。假使两方面保持平衡,那么所有这些小的不规则的力对活塞的有效作用必须与重力相等。
假使把活塞推下去,它把气体压缩到只有原来体积的一部分,譬如说,压缩到1/2,而它的温度却保持不变,那么根据动理论我们可以预料有什么情况会发生呢?难道撞击力会比过去更有效些或更无效些吗?现在粒子比过去更紧密了,虽然平均动能还像以前一样,但是粒子撞击活塞的次数更多了,因此总的力可能要大些。根据动理论所表达的图景可以清楚地看出,要使活塞保持在更低的位置,需要更大的重力。这个简单的实验情况是大家都知道的,但是它的预测却是从物质动理论合理地推出来的。
再研究另一个实验。取两个容器,它们装有体积相等的不同气体,如氢与氮,两者的温度相同。假设两个容器都用同样的活塞封闭住,加在活塞上的重力也相等,简单说来,这就是表示两种气体具有相同的体积、温度与压力。因为温度相同,那么根据动理论,粒子的平均动能也相同。因为压力相同,那么两个活塞都是受到同样的总的力所撞击。平均起来,每个粒子具有相同的能量,两个容器具有相同的容积。因此虽然在化学上来说这两种气体是不同的,但是每个容器中的分子数必定是相等的。这个结果对理解许多化学现象是很重要的,它表明在一定的温度和压力下,在既定的容积中的分子数不是某一种气体所独有的,而是一切气体都有的。特别是动理论不仅预言这样一个普遍的数的存在,而且还能帮助我们来决定这个数。我们以后还要再研究这个问题。
物质动理论如实验确定那样,无论在定量方面或是在定性方面,都能解释气体定律。而且,虽然这个理论的最大成就是在气体方面,但它却不限于气体。
气体可以用降低温度的方法使其液化。降低物质的温度就意味着减小它的粒子的平均动能,因此,液体内粒子的平均动能比相应的气体的粒子的平均动能小些是很显明的。
所谓的布朗运动,首先给液体内粒子的运动作了一个令人信服的说明。这个奇异的现象,如果没有物质动理论

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的