x的奇幻之旅-第4章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
因为上述理由,很多年来,没有人能够把一张纸对折8次以上,直到2002年,一位名叫布兰妮?加利文的女高中生完成了这个“不可能的任务”。首先,加利文姑娘推导出了一个公式:
在这个公式中,L是纸张的长度,T是纸张的厚度,n是这张纸能被对折的最大次数。从这个公式中可以清楚地看出,这个任务之所以那么困难,就是因为有两个2n存在:其中一个2n表示每对折一次纸张的厚度就会翻倍,另一个2n则表示每对折一次纸张的长度就会减半。
根据这个公式,加利文算出,她需要一卷特制的厕纸,这卷纸大约有3/4英里长(相当于1207米)。2002年1月,加利文买到了能满足她的要求的厕纸,她在美国加利福尼亚州波莫纳市的一家购物中心里铺开了这卷厕纸,开始进行这项伟大的工程。7个小时以后,在父母的帮助下,加利文把这张纸对折了12次,一举打破了世界纪录。
理论上,指数增长是你致富的希望。假设你把钱存在银行里,每年的年利率是r,那么一年以后,你的存款会变成本金的(1+r)倍;两年以后,你的存款会变成本金的(1+r)2倍;x年以后,你的存款会变成本金的(1+r)x倍。这就是我们所说的“复利”,即传说中“滚雪球”的魔力,这种现象的本质其实也是指数增长。
第11章 函数:你能把一张纸对折8次以上吗?(4)
现在,让我们回到本章一开始就提到的对数。为什么我们需要对数?因为很多时候,我们需要一些反向的工具,用于消除某种其他工具产生的效果。就像每一个办公室文员都需要一台订书机和一台订书针拆除器一样,每一个数学家都需要指数函数和对数函数。是的,对数函数是指数函数的逆运算。也就是说,如果你往计算器中输入一个数字x,按下10x按钮,然后再按下logx按钮,那么计算器就会给出你输入的那个数字。例如,如果x取2,10x就是102也就是100。然后再计算log(100),我们得到的结果等于2。在计算器上,logx按钮可以抵消10x按钮的功能,所以
log(100)=2。同样,log(1000)=3,log(10000)=4,因为1000=103,10000=104。
看出其中的神奇之处了吗?当log后面括号里的数字以乘法增长,每次增长10倍,从100增长到1000,再从1000增长到10000的时候,它们的对数却以加法增长,每次增长1,从2增长到3,再从3增长到4。当我们听音乐的时候,我们的大脑也在进行一种类似的工作。音的频率do、re、mi、fa、sol、la、ti、do听起来像是一步一步、一阶一阶地增长的,但其实这些音的震动频率是以乘法的方式成倍增长的。看!我们人类其实是用对数的方法来识别音阶的。
在很多领域,对数使得计数变得更加简洁明了:从衡量地震强度的里氏震级,到化学中衡量酸碱度的pH值,这些读数或指标其实都是对数。当需要衡量的数量大的极大、小的极小,横跨的范围很宽的时候,对数的引入能起到压缩作用,压缩后的数据更直观易懂,便于比较和分析。比如说100和1亿之间相差100万倍,这个差距太大,以至于一般人的头脑已经无法理解这个差距的具体含义了。但是,100和1亿的对数只差4倍(100的对数是2,1亿的对数是8,因为100=102,100000000=108)。在日常对话中,我们会说某人的年薪是6位数,意思是某人的年薪在100000~999999美元之间。这种说法其实也用到了对数的概念,这个庞大的年薪数额的对数不正好是6左右吗?准确地说,这个范围内的年薪数额的对数在5到6之间。
幂函数、指数函数、对数函数,这些数学工具实在是相当巧妙和实用。但是,数学家的工具箱有时也有点儿“纸上谈兵”的味道。正是因为工具的局限性,我至今也没能成功地组装起我从宜家家居买来的那个书架。